An efficient high dynamic range 3D shape reconstruction method based on double phase-shifting profilometry

Author:

Wang Jianhua,Yang Yanxi

Abstract

Abstract Phase-shifting profilometry is the most widely used wrapped phase extraction method due to the advantages of high accuracy and resolution, robust to noise. However, due to the local specular reflection of the measured surfaces and the limited camera dynamic range, some pixels of the captured fringes become intensity saturated, thus introducing wrapped phase error. In this work, we simulate the Fourier spectrum of the saturated fringe and represent the saturated fringe approximately by a third-order Fourier series. Subsequently, we establish the saturation-induced wrapped phase error model. According to this model, it can be found that for the N-step phase-shifting method, the spatial frequency of the saturation-induced wrapped phase error is N times of that of the ideal wrapped phase. We phase shift the N-step phase-shifting fringe sequence π/N to generate the additional phase-shifting fringe sequence, and thus generate the opposite saturation-induced wrapped phase error. Finally, the saturation-induced wrapped phase error can be greatly reduced by fusing the wrapped phases of the two sets of phase-shifting fringe sequences. Compared with the traditional method and the adaptive projection fringe method, the phase error of the double N-step phase-shifting method is reduced by 67.63% and 65.2%, respectively.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3