Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

Author:

Cao Yongyan,Yang WeiORCID,Li Hao,Zhang Hao,Li Minzan

Abstract

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy (R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3