Theoretical model of magnetoacoustic emission considering the microstructure of ferromagnetic material

Author:

Zhang HongliangORCID,Jiao JingpinORCID,Wu Bin,He Cunfu

Abstract

Abstract Magnetoacoustic emission (MAE) holds great promise for evaluating the mechanical properties of ferromagnetic materials. To refine the problems of the current theoretical and numerical models of MAE, a theoretical MAE model that considers the microscopic dependence of the hysteresis properties is proposed in this paper. The microstructure (dislocation density and grain size) and the correlation of MAE jumps are considered and incorporated into the model. Then, the influences of magnetization parameters and microstructure parameters on the envelope of the MAE signal are analyzed by the proposed theoretical model. The proposed theoretical model is then fully evaluated by simulations and experiments. The MAE experiments are conducted on ferromagnetic specimens with different hardnesses, and the MAE signals with different hardnesses are simulated by inverting the basic parameters of the MAE model with the genetic algorithm. Further, the crucial hysteresis parameters of the specimens are calculated using the results of microscopic measurements and the calculated parameters agree well with inversion results from experimental signals. The results demonstrate that the proposed theoretical model is valid for the MAE signal simulation. The trends of different hardnesses can be predicted by the MAE simulation signals. Moreover, the model can be used for theoretical analysis of the microscopic dependence of the MAE signal.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3