MC-WDWCNN: an interpretable multi-channel wide-kernel wavelet convolutional neural network for strong noise-robust fault diagnosis

Author:

Zhou JianyuORCID,Zhang Xiangfeng,Jiang Hong,Shao ZhenfaORCID,Ma Benchi,Zhou Rong

Abstract

Abstract Deep learning-based methods have shown promising results in fault diagnosis, but research on interpretability and noise robustness still needs to be done. A multi-channel wide-kernel wavelet convolutional neural network is proposed to address these issues. Firstly, a first layer of multi-channel wide-kernel convolution is designed to fuse different weight information and suppress high-frequency noise. Secondly, a discrete wavelet transform block is designed to retain the low-frequency components of the discrete wavelet transform for signal denoising and feature dimension reduction. At the same time, Improved Balance Dynamic Adaptive Threshold is used to enhance the robustness of the model’s noise and the sparsity of features, making the model easier to optimize. Lastly, a power spectrum and normalized class activation mapping are designed to validate the post-hoc explanations of the model. The effectiveness and reliability of the Multi-Channel Wide Kernel Wavelet Convolutional Neural Network are verified through two gearbox datasets.

Funder

Tianshan Talent Training Program

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3