A Hopular based weighting scheme for improving kinematic GNSS positioning in deep urban canyon

Author:

Zhou Zelin,Liu Baoyu,Yang HongzhouORCID

Abstract

Abstract Global navigation satellite system (GNSS) positioning performance in the urban dense environment experiences significant deterioration due to frequent non-line-of-sight (NLOS) and multipath errors. An accurate weighting scheme is critical for positioning, especially in urban environment. Traditional methods for determining the weights of observations typically rely on the carrier-to-noise density ratio (C/N0) and the elevations from satellites to receivers. Nevertheless, the performance of these methods is degraded in the dense urban settings, as C/N0 and elevation measurements fail to fully capture the intricacies of NLOS and multipath errors. In this paper, a novel GNSS observations weighting scheme based on Hopular GNSS signal classifier, which can accurately identify the LOS/NLOS signals using medium-sized training dataset, is proposed to improve the urban kinematic navigation solution in real-time kinematic positioning mode. Four GNSS features: C/N0, time-differenced code-minus-carrier, loss of lock indicator and satellite’s elevation, are employed in the training of the Hopular based signal classifier. The performance of the new method is validated using two urban kinematic datasets collected by a U-blox F9P receiver with a low-cost antenna, in downtown Calgary. For the first testing dataset, the results show that the Hopular based weighting scheme outperforms the three most commonly used GNSS observations weighting schemes: C/N0, elevation, and a combined C/N0-elevation approach. Approximately 10.089 m of horizontal root-mean-squared (RMS) positioning error and 12.592 m of vertical RMS error are achieved using the proposed method; with improvements of 78.83%, 46.82% and 43.27% on horizontal positioning accuracy and 54.00%, 47.51% and 49.69% on vertical positioning accuracy, compared to using C/N0, elevation and C/N0-elevation combined weighting schemes, respectively. For the second testing dataset, a similar performance is achieved with nearly 11.631 m of horizontal RMS error and 10.158 m of vertical RMS error; improvements of 64.58%, 32.90% and 22.40% on horizontal positioning accuracy and 71.99%, 65.24% and 55.88% on vertical positioning accuracy are achieved, compared to using C/N0, elevation and C/N0-elevation combined weighting schemes, respectively.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Reference38 articles.

1. Enhancing least squares GNSS positioning with 3D mapping without accurate prior knowledge;Adjrad;Navigation,2017

2. Layer normalization;Ba,2016

3. Probabilistic interpretation of feedforward classification networks outputs, with relationships to statistical pattern recognition;Bridle,1990

4. GPS signal diffraction modelling: the stochastic SIGMA-δ model;Brunner;J. Geod.,1999

5. TEQC: the multi-purpose toolkit for GPS/GLONASS data;Estey;GPS Solut.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3