A machine learning approach for real-time cortical state estimation

Author:

Weiss David AORCID,Borsa Adriano MFORCID,Pala AurélieORCID,Sederberg Audrey J,Stanley Garrett BORCID

Abstract

Abstract Objective. Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as ‘cortical state’. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation. Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments. Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data. Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of Biomedical Imaging and Bioengineering

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

McCamish Parkinson’ s Disease Innovation Program

Publisher

IOP Publishing

Reference94 articles.

1. Two types of ocular motility occurring in sleep;Aserinsky;J. Appl. Physiol.,1955

2. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming;Dement;Electroencephalogr. Clin. Neurophysiol.,1957

3. Über das Elektrenkephalogramm des Menschen, 2nd report;Berger;J. Psychol. Neurol.,1930

4. Über das Elektrenkephalogramm des Menschen, 4th report;Berger;Arch. Psychiatr. Nervenkr.,1932

5. Alpha rhythms as physiological and abnormal phenomena;Niedermeyer;Int. J. Psychophysiol.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3