Operant conditioning reveals task-specific responses of single neurons in a brain–machine interface

Author:

Garcia-Garcia Martha GORCID,Marquez-Chin Cesar,Popovic Milos RORCID

Abstract

Abstract Objective. Volitional modulation of single cortical neurons holds great potential for the implementation of brain–machine interfaces (BMIs) because it can induce a rapid acquisition of arbitrary associations between machines and neural activity. It can also be used as a framework to study the limits of single-neuron control in BMIs. Approach. We tested the control of a one-dimensional actuator in two BMI tasks which differed only in the neural contingency that determined when a reward was dispensed. A thresholded activity task, commonly implemented in single-neuron BMI control, consisted of reaching or exceeding a neuron activity level, while the second task consisted of reaching and maintaining a narrow neuron activity level (i.e. windowed activity task). Main findings. Single neurons in layer V of the motor cortex of rats improved performance during both the thresholded activity and windowed activity BMI tasks. However, correct performance during the windowed activity task was accompanied by activation of neighboring neurons, not in direct control of the BMI. In contrast, only neurons in direct control of the BMI were active at the time of reward during the thresholded activity task. Significance. These results suggest that thresholded activity single-neuron BMI implementations are more appropriate compared to windowed activity BMI tasks to capitalize on the adaptability of cortical circuits to acquire novel arbitrary skills.

Funder

Natural Sciences and Engineering Research Council of Canada

Physicians’ Services Incorporated Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3