Beta-band power classification of go/no-go arm-reaching responses in the human hippocampus

Author:

Martin del Campo Vera RobertoORCID,Sundaram ShivaniORCID,Lee Richard,Lee Yelim,Leonor Andrea,Chung Ryan SORCID,Shao ArthurORCID,Cavaleri Jonathon,Gilbert Zachary DORCID,Zhang Selena,Kammen Alexandra,Mason Xenos,Heck Christi,Liu Charles YORCID,Kellis Spencer,Lee Brian

Abstract

Abstract Objective. Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between ‘Go’ and ‘No-go’ trials in a Go/No-go arm-reaching task. Approach. Our approach centers on capturing the modulation of beta-band (13–30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a ‘center-out’ Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between ‘Go’ and ‘No-go’ trials. The accuracy of five different discriminant functions was evaluated using cross-validation. Main results. The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants. Significance. This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain–computer interface applications.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3