Feed-in-tariff is key to Japan’s current biomass power’s viability, even with environmental externalities

Author:

Miyatake KosukeORCID,Haraguchi MasahikoORCID,Toyota Tomoyo,Nagai YuORCID,Taniguchi MakotoORCID

Abstract

Abstract Bioenergy is increasingly recognized as an effective tool for removing carbon dioxide from the atmosphere. However, its economic feasibility remains underexplored, particularly when accounting for environmental impacts. This study proposes a quantitative assessment framework to calculate the cost-benefit ratio of biomass power generation and to assess the sustainability of its supporting policy tools, such as feed-in-tariffs (FIT). The framework accounts for benefits through electricity generation and environmental externalities, namely emissions from feedstock production and procurement, such as the transportation of biomass materials. This allows for quantification and a detailed discussion of multiple environmental burdens of biomass energy and economic costs. As a case study, this framework was applied to a hypothetical biomass plant in Japan, which has the fifth-largest biomass market globally. We prepare several scenarios to consider diverse conditions within the Japanese biomass industry, including the types of biomass materials used (pellets versus chips), their sources (domestic versus international), and the biomass technologies employed. The results show that using pellets, predominantly imported, significantly increases biomass energy costs. The increase in cost is directly proportional to the quantity of utilized pellets and their transportation distances. However, pellet production location —whether in Vietnam or Canada—doesn’t significantly change the overall cost calculations in our study. Our result is consistent across various biomass technologies, showing that the high selling price under the feed-in-tariff system, rather than material type, supply origin, or transportation mode, plays the most critical role in economic feasibility, even when accounting for environmental externalities. Thus, decision-makers must reevaluate the efficacy of FIT policies for wood biomass powers, where fuel costs share a substantial portion. We also discuss its synergies with local industries and trade-offs with other land-use objectives.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3