Coupled model intercomparison project phase 6 (CMIP6) high resolution model intercomparison project (HighResMIP) bias in extreme rainfall drives underestimation of amazonian precipitation

Author:

Negron-Juarez RobinsonORCID,Wehner MichaelORCID,Silva Dias Maria Assunção F,Ullrich Paul,Chambers Jeffrey Q,Riley William JORCID

Abstract

Abstract Extreme rainfall events drive the amount and spatial distribution of rainfall in the Amazon and are a key driver of forest dynamics across the basin. This study investigates how the 3-hourly predictions in the High Resolution Model Intercomparison Project (HighResMIP, a component of the recent Coupled Model Intercomparison Project, CMIP6) represent extreme rainfall events at annual, seasonal, and sub-daily time scales. TRMM 3B42 (Tropical Rainfall Measuring Mission) 3 h data were used as observations. Our results showed that eleven out of seventeen HighResMIP models showed the observed association between rainfall and number of extreme events at the annual and seasonal scales. Two models captured the spatial pattern of number of extreme events at the seasonal and annual scales better (higher correlation) than the other models. None of the models captured the sub-daily timing of extreme rainfall, though some reproduced daily totals. Our results suggest that higher model resolution is a crucial factor for capturing extreme rainfall events in the Amazon, but it might not be the sole factor. Improving the representation of Amazon extreme rainfall events in HighResMIP models can help reduce model rainfall biases and uncertainties and enable more reliable assessments of the water cycle and forest dynamics in the Amazon.

Funder

DOE Office of Science, Office of Biological and Environmental Research, Next Generation Ecosystem Experiments-Tropics

DOE Office of Science’s Regional and Global Model Analysis, Reducing Uncertainties in Biogeochemical Interactions through Synthesis Computation Scientific Focus Area

RGMA’s Calibrated and Systematic Characterization, Attribution, and Detection of Extremes (CASCADE) and other DOE OS projects

U.S. Department of Energy

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3