Near-surface elevated pollution: what we don’t know doesn’t hurt? A numerical study over Mt. Carmel

Author:

Haikin NitsaORCID,Alpert PinhasORCID

Abstract

Abstract Many air pollution events are occasionally difficult to explain. While most monitoring-based air pollution assessment studies deal with surface analysis, the near-surface elevated pollutants are challenging. The lack of data and understanding of those elevated layers, leaves us ‘blind’ and with no clue where, when and how intensively these pollutants may hit the surface. Here, this challenge at the specific domain of Mt. Carmel is addressed. The atmospheric numerical models RAMS and HYPACT were employed on Haifa Bay in the Eastern Mediterranean with nested horizontal grids down to 0.5 km, in order to resolve the fine-scale flow, along an air pollution episode which serves as a case study. Sixteen locations were determined, representing monitored and non-monitored sites in the complex terrain sub-domains. Results show multi-inversion profiles, which are consistent with an earlier observational study over the region. Concentration differences up to an order of magnitude between adjacent sites (∼2 km) were found, often associated with near-zero surface values, while some simulated peaks were at elevations of 100–400 m above ground level (AGL). The current event offers a view on the near-surface elevated layers, and points at limitations of ground-level monitoring as an indicator of air pollution. This study highlights the importance of near-surface pollution, which is often an unknown source for surface pollution. Overall, steep vertical gradient of pollution as shown here is associated with a combination of deep inversion (or multi-inversion profile), vertical circulation due to topography or synoptic flow, and small scale circulation induced by the complex topography. Since monitoring of the elevated layers is limited by the technology, it is suggested that high resolution advanced models should be used for further exploration of the near-surface pollution.

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3