Author:
Li Chao,Li Jie,Huang Yanbin,Liu Jun,Ma Mengmeng,Liu Kong,Zhao Chao,Wang Zhijie,Qu Shengchun,Zhang Lei,Han Haiyan,Deng Wenshuang,Wang Zhanguo
Abstract
Abstract
The utilization of solar energy to drive energy conversion and simultaneously realize pollutant degradation via photocatalysis is one of most promising strategies to resolve the global energy and environment issues. During the past decade, graphite carbon nitride (g-C3N4) has attracted dramatically growing attention for solar energy conversion due to its excellent physicochemical properties as a photocatalyst. However, its practical application is still impeded by several limitations and shortcomings, such as high recombination rate of charge carriers, low visible-light absorption, etc. As an effective solution, the electronic structure tuning of g-C3N4 has been widely adopted. In this context, firstly, the paper critically focuses on the different strategies of electronic structure tuning of g-C3N4 like vacancy modification, doping, crystallinity modulation and synthesis of a new molecular structure. And the recent progress is reviewed. Finally, the challenges and future trends are summarized.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献