High room-temperature magnetization in Co-doped TiO2 nanoparticles promoted by vacuum annealing for different durations

Author:

Huang Wenqiang,Lin Rui,Chen Weijie,Wang Yuzhu,Zhang Hong

Abstract

Abstract To clarify the contribution of oxygen vacancies to room-temperature ferromagnetism (RTFM) in cobalt doped TiO2 (Co-TiO2), and in order to obtain the high level of magnetization suitable for spintronic devices, in this work, Co-TiO2 nanoparticles are prepared via the sol–gel route, followed by vacuum annealing for different durations, and the influence of vacuum annealing duration on the structure and room-temperature magnetism of the compounds is examined. The results reveal that with an increase in annealing duration, the concentration of oxygen vacancies rises steadily, while the saturation magnetization (M s) shows an initial gradual increase, followed by a sharp decline, and even disappearance. The maximum M s is as high as 1.19 emu/g, which is promising with respect to the development of spintronic devices. Further analysis reveals that oxygen vacancies, modulated by annealing duration, play a critical role in tuning room-temperature magnetism. An appropriate concentration of oxygen vacancies is beneficial in terms of promoting RTFM in Co-TiO2. However, excessive oxygen vacancies will result in a negative impact on RTFM, due to antiferromagnetic superexchange interactions originating from nearest-neighbor Co2+ ions.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3