Photocatalytic study of Ni-N-codoped TiO2 nanoparticles under visible light irradiation

Author:

Rani Anju,Dhiman R LORCID,Singh Virender,Kumar Suresh,Kumar SureshORCID

Abstract

Abstract In present paper pure and Ni-N-codoped TiO2 nanoparticles have been synthesized via sol gel technique. Crystal phase formation of as synthesized nanoparticles was determined from x-ray diffraction which confirms the existence of anatase phase of TiO2. The average crystalline size was determined from x-ray diffraction and estimated from Transmission Electron Micrographs found to vary from 24.8 nm to 10.2 nm. The morphology was studied by Field Emission Scanning Electron Microscopy and reveals that the synthesized nanoparticles are highly crystalline, spherical and small agglomerated. It is observed that on doping the agglomeration decreases and is due to relative rates of growth process. The band gap energy was calculated from UV–visible absorption spectroscopy and found to be 3.12, 1.81, 1.69 and 1.53 eV respectively. The appearance of emission bands at 453, 470, 483 and 494 nm in Photoluminescence spectra could be arising from defect energy states caused by oxygen vacancies within the forbidden region of TiO2.The structural formation of the synthesized nanoparticles is investigated from Fourier-transform-infrared and Energy dispersive x-ray spectroscopy measurements. Photocatalytic degradation efficiency of as synthesized nanoparticles against two different dyes (Congo red and Methyl orange) was investigated under visible light source of wavelength 420–520 nm and is found to increase with dopant concentration (x). It is observed that the increase in Photocatalytic degradation efficiency of synthesized nanoparticles is attributed to decrease in carrier recombination rate arises from the decrease in band gap energy. On the basis of these observations it is concluded that the increase in Photocatalytic activity is due to increase in surface area arises from the decrease in average crystalline size of the synthesized nanoparticles.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3