In-situ observation of nucleation and property evolution in films grown with an atmospheric pressure spatial atomic layer deposition system

Author:

Mistry KissanORCID,Jones AlexanderORCID,Kao Manfred,Yeow Travis Wen-Kai,Yavuz Mustafa,Musselman Kevin PORCID

Abstract

Abstract Atmospheric pressure—spatial atomic layer deposition (AP-SALD) is a promising open-air deposition technique for high-throughput manufacturing of nanoscale films, yet the nucleation and property evolution in these films has not been studied in detail. In this work, in situ reflectance spectroscopy was implemented in an AP-SALD system to measure the properties of Zinc oxide (ZnO) and Aluminum oxide (Al2O3) films during their deposition. For the first time, this revealed a substrate nucleation period for this technique, where the length of the nucleation time was sensitive to the deposition parameters. The in situ characterization of thickness showed that varying the deposition parameters can achieve a wide range of growth rates (0.1–3 nm/cycle), and the evolution of optical properties throughout film growth was observed. For ZnO, the initial bandgap increased when deposited at lower temperatures and subsequently decreased as the film thickness increased. Similarly, for Al2O3 the refractive index was lower for films deposited at a lower temperature and subsequently increased as the film thickness increased. Notably, where other implementations of reflectance spectroscopy require previous knowledge of the film’s optical properties to fit the spectra to optical dispersion models, the approach developed here utilizes a large range of initial guesses that are inputted into a Levenberg-Marquardt fitting algorithm in parallel to accurately determine both the film thickness and complex refractive index.

Funder

Mitacs

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3