Nanomaterials significance; contaminants degradation for environmental applications

Author:

Khan Sadaf BashirORCID,Lee Shern Long

Abstract

Abstract Nanotechnology provides an innovative platform that is inexpensive, reasonable, having least chances of secondary contamination, economical, and an effective method to concurrently eradicate numerous impurities from contaminated wastewater. Presently, different researches have been conducted exhibiting versatile multifunctional nanoparticles (NPs) that concurrently confiscate several impurities existing in the water. Nanotechnology helps in eliminating impurities from water through the rapid, low-cost method. Pollutants such as 2,4-dichlorophenol (death-causing contaminant as it quickly gets absorbed via the skin), or industrial dyes including methyl violet (MV) or methyl orange (MO) causing water contamination were also concisely explained. In this mini-review, nanomaterials were critically investigated, and the practicability and effectiveness of the elimination of contaminations were debated. The analysis shows that a few of these processes can be commercialized in treating diverse toxins via multifunctional nanotechnology innovations. Hence, nanotechnology shows a promising and environmental friendly method to resolve the restrictions of current and conventional contaminated water treatment. We can progress the technology, without influencing and affecting the natural earth environment conditions.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Medicine

Reference132 articles.

1. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes;Khan;Appl. Surf. Sci.,2017

2. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils;Xie;Agricultural Meteorology,2002

3. Climate change. Climate’s dark forcings;Andreae;Science,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3