Computational design of single-atom catalysts embedded on reduced graphitic carbon nitride monolayers

Author:

Jakhar MukeshORCID,Ding Yi,Fahlman Bradley D,Barone VeronicaORCID

Abstract

Abstract The design of efficient single-atom catalysts (SACs) with optimal activity and selectivity for sustainable energy and environmental applications remains a challenge. In this work, comprehensive first-principles calculations are performed to validate the feasibility of single TM atoms (3d, 4d, and 5d series) embedded in two different conformations of graphitic carbon nitride (g-C3N4) monolayers. Additionally, we investigate the effect of nitrogen vacancies in the g-C3N4 monolayers on the absorption of SACs considering three potential absorption scenarios that correspond to different experimental conditions. Our results point to the most stable configurations with the lowest formation energies and indicate that the absorption of single TM atoms on-vacancy and on-center sites are more favorable than via-substitution. In addition to the thermodynamic stability, electrochemical stability is also investigated through the calculation of the dissolution potential of the SACs. Within the scenarios considered in this study, we find that Pt, Pd, Rh, Au, Ru, Ir, Cu, Co, Fe, and Ni will produce the most robust SACs on both (edge and bridge) N vacancy site of reduced g-C3N4. Our findings provide guidance for the design and development of g-C3N4 sheets decorated with single TM atoms for technological applications such as pollutant degradation, CO2 reduction, N2 fixation, selective oxidation, water splitting, and metal ion-based batteries.

Funder

Automotive Research Center

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3