Sm3+ driven enhancement in photocatalytic degradation of hazardous dyes and photoluminescence properties of hexagonal-ZnO nanocolumns

Author:

Dash DebasritaORCID,Panda N RORCID,Sahu DojalisaORCID

Abstract

Abstract Samarium doped ZnO (Sm-ZnO) nanocolumns were grown by wet chemical method and the doping effect of Sm3+ on visible light photocatalytic (PC) and photoluminescence (PL) properties of ZnO was investigated. Methylene blue (MB) and methyl orange (MO) were considered for the degradation study as a step initiated towards the remediation of industrial wastewater. Subsequent characterization studies by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) enumerate that the hexagonal-wurtzite structured Sm-ZnO is highly crystalline in nature and possesses hexagonal column like nano-architectures. Although, a charge imbalance exists between the ions, the substitutional effects of Sm3+ at Zn2+ sites have been observed from the XRD spectra and discussed by suitable mechanisms. FTIR measurement gives the information on the evolution of peaks related to metal-oxygen bond in Sm-ZnO which may be linked with Sm ions. PC measurement shows that the degradation efficiency of 95% can be achieved by Sm-ZnO photocatalysts in degrading MB and 91% for MO. Sm doping induces high charge separation efficiency and generation of OH ions in ZnO leading to such improvisation in degradation efficiency. The prepared Sm-ZnO nanocatalysts possess high degree of photostability and reusability even after fourth cycle of photodegradation. PL spectra show the suppression of the sharp and intense excitonic emission band of ZnO in Sm-ZnO due to low rated direct recombination of carriers. Incorporation of Sm3+ ends up with intrinsic defect mediated enhancement in the visible emissions especially in the blue, yellow and red region of light spectrum.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3