Abstract
Abstract
We want to understand how relaxation process from an initial non-generic state proceeds towards a long-time typical state reached under unitary quantum evolution. One would expect that after some initial correlation time relaxation will be a simple exponential decay with constant decay rate. We show that this is not necessarily the case. Studying various Floquet systems with fixed two-qubit gates, and focusing on purity and out-of-time-ordered correlation functions, we find that in many situations relaxation proceeds in two phases of exponential decay having different relaxation rates. Namely, in the thermodynamic limit the relaxation rate exhibits a change at a critical time proportional to system’s size. The initial thermodynamically relevant rate can be slower or faster than the asymptotic one, demonstrating that the recently discovered phantom relaxation, in which the decay is slower than predicted by a nonzero transfer matrix gap, is not limited to only random circuits.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献