Mapping dynamical systems with distributed time delays to sets of ordinary differential equations

Author:

Henrik Nevermann DanielORCID,Gros ClaudiusORCID

Abstract

Abstract Real-world dynamical systems with retardation effects are described in general not by a single, precisely defined time delay, but by a range of delay times. An exact mapping onto a set of N + 1 ordinary differential equations exists when the respective delay distribution is given in terms of a gamma distribution with discrete exponents. The number of auxiliary variables one needs to introduce, N, is inversely proportional to the variance of the delay distribution. The case of a single delay is therefore recovered when N . Using this approach, denoted here the ‘kernel series framework’, we examine systematically how the bifurcation phase diagram of the Mackey–Glass system changes under the influence of distributed delays. We find that local properties, f.i. the locus of a Hopf bifurcation, are robust against the introduction of broadened memory kernels. Period-doubling transitions and the onset of chaos, which involve non-local properties of the flow, are found in contrast to be more sensitive to distributed delays. In general, the observed effects are found to scale as 1 / N . Furthermore, we consider time-delayed systems exhibiting chaotic diffusion, which is present in particular for sinusoidal flows. We find that chaotic diffusion is substantially more pronounced for distributed delays. Our results indicate in consequence that modeling approaches of real-world processes should take the effects of distributed delay times into account.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifurcations and Chaos in Dynamical Systems;Complex and Adaptive Dynamical Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3