Abstract
Abstract
Real-world dynamical systems with retardation effects are described in general not by a single, precisely defined time delay, but by a range of delay times. An exact mapping onto a set of N + 1 ordinary differential equations exists when the respective delay distribution is given in terms of a gamma distribution with discrete exponents. The number of auxiliary variables one needs to introduce, N, is inversely proportional to the variance of the delay distribution. The case of a single delay is therefore recovered when
N
→
∞
. Using this approach, denoted here the ‘kernel series framework’, we examine systematically how the bifurcation phase diagram of the Mackey–Glass system changes under the influence of distributed delays. We find that local properties, f.i. the locus of a Hopf bifurcation, are robust against the introduction of broadened memory kernels. Period-doubling transitions and the onset of chaos, which involve non-local properties of the flow, are found in contrast to be more sensitive to distributed delays. In general, the observed effects are found to scale as
1
/
N
. Furthermore, we consider time-delayed systems exhibiting chaotic diffusion, which is present in particular for sinusoidal flows. We find that chaotic diffusion is substantially more pronounced for distributed delays. Our results indicate in consequence that modeling approaches of real-world processes should take the effects of distributed delay times into account.
Funder
Horizon 2020 Framework Programme
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bifurcations and Chaos in Dynamical Systems;Complex and Adaptive Dynamical Systems;2024