Abstract
Abstract
The Gaussian phase-space representation can be used to implement quantum dynamics for fermionic particles numerically. To improve numerical results, we explore the use of dynamical diffusion gauges in such implementations. This is achieved by benchmarking quantum dynamics of few-body systems against independent exact solutions. A diffusion gauge is implemented here as a so-called noise-matrix, which satisfies a matrix equation defined by the corresponding Fokker–Planck equation of the phase-space representation. For the physical systems with fermionic particles considered here, the numerical evaluation of the new diffusion gauges allows us to double the practical simulation time, compared with hitherto known analytic noise-matrices. This development may have far reaching consequences for future quantum dynamical simulations of many-body systems.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献