Geometric-arithmetic master equation in large and fast open quantum systems

Author:

Davidović DragomirORCID

Abstract

Abstract Understanding nonsecular dynamics in open quantum systems is addressed here, with emphasis on systems with large numbers of Bohr frequencies, zero temperature, and fast driving. We employ the master equation, which replaces arithmetic averages of the decay rates in the open system, with their geometric averages, and find that it can improve the second order perturbation theory, known as the Redfield equation, while enforcing complete positivity on quantum dynamics. The characteristic frequency scale that governs the approximation is the minimax frequency: the minimum of the maximum system oscillation frequency and the bath relaxation rate; this needs to be larger than the dissipation rate for it to be valid. The concepts are illustrated on the Heisenberg ferromagnetic spin-chain model. To study the accuracy of the approximation, a Hamiltonian is drawn from the Gaussian unitary ensemble, for which we calculate the fourth order time-convolutionless master equation, in the Ohmic bath at zero temperature. Enforcing the geometric average, decreases the trace distance to the exact solution. Dynamical decoupling of a qubit is examined by applying the Redfield and the geometric-arithmetic master equations, in the interaction picture of the time dependent system Hamiltonian, and the results are compared to the exact path integral solution. The geometric-arithmetic approach is significantly simpler and can be super-exponentially faster compared to the Redfield approach.

Funder

GTQA

DOE

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3