Isomonodromic deformations along a stratum of the coalescence locus

Author:

Guzzetti DavideORCID

Abstract

Abstract We consider deformations of a differential system with Poincaré rank 1 at infinity and Fuchsian singularity at zero along a stratum of a coalescence locus. We give necessary and sufficient conditions for the deformation to be strongly isomonodromic, both as an explicit Pfaffian system (integrable deformation) and as a non linear system of PDEs on the residue matrix A at the Fuchsian singularity. This construction is complementary to that of (Cotti et al 2019 Duke Math. J. 168 967–1108). For the specific system here considered, the results generalize those of (Jimbo et al 1981 Physica D 2 306), by giving up the generic conditions, and those of (Bertola and Mo 2005 Int. Math. Res. Pap. 2005 565–635), by giving up the Lidskii generic assumption. The importance of the case here considered originates form its applications in the study of strata of Dubrovin-Frobenius manifolds and F-manifolds.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference34 articles.

1. Isomonodromy deformations at an irregular singularity with coalescing eigenvalues;Cotti;Duke Math. J.,2019

2. Results on the extension of isomonodromy deformations to the case of a resonant irregular singularity;Cotti;Random Matrices Theory Appl.,2018

3. Notes on non-generic isomonodromy deformations;Guzzetti;SIGMA 14,2018

4. Deformations with a resonant irregular singularity;Guzzetti,2018

5. Isomonodromy deformations with coalescing eigenvalues and applications;Guzzetti,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isomonodromic Deformations Along the Caustic of a Dubrovin-Frobenius Manifold;Symmetry, Integrability and Geometry: Methods and Applications;2023-11-16

2. On a Connection Formula of a Higher Rank Analog of Painlevé VI;International Mathematics Research Notices;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3