A chaotic lattice field theory in one dimension*

Author:

Liang HORCID,Cvitanović PORCID

Abstract

Abstract Motivated by Gutzwiller’s semiclassical quantization, in which unstable periodic orbits of low-dimensional deterministic dynamics serve as a WKB ‘skeleton’ for chaotic quantum mechanics, we construct the corresponding deterministic skeleton for infinite-dimensional lattice-discretized scalar field theories. In the field-theoretical formulation, there is no evolution in time, and there is no ‘Lyapunov horizon’; there is only an enumeration of lattice states that contribute to the theory’s partition sum, each a global spatiotemporal solution of system’s deterministic Euler–Lagrange equations. The reformulation aligns ‘chaos theory’ with the standard solid state, field theory, and statistical mechanics. In a spatiotemporal, crystallographer formulation, the time-periodic orbits of dynamical systems theory are replaced by periodic d-dimensional Bravais cell tilings of spacetime, each weighted by the inverse of its instability, its Hill determinant. Hyperbolic shadowing of large cells by smaller ones ensures that the predictions of the theory are dominated by the smallest Bravais cells. The form of the partition function of a given field theory is determined by the group of its spatiotemporal symmetries, that is, by the space group of its lattice discretization, best studied on its reciprocal lattice. Already one-dimensional lattice discretization is of sufficient interest to be the focus of this paper. In particular, from a spatiotemporal field theory perspective, ‘time’-reversal is a purely crystallographic notion, a reflection point group, leading to a novel, symmetry quotienting perspective of time-reversible theories and associated topological zeta functions.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference188 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The spark of synchronization in heterogeneous networks of chaotic maps;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-02-01

2. Local correlations in coupled cat maps with space-time duality;Journal of Physics A: Mathematical and Theoretical;2022-12-16

3. Semiclassical roots of universality in many-body quantum chaos;Journal of Physics A: Mathematical and Theoretical;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3