Abstract
Abstract
Conical intersections in two-state systems require a coordinate-dependent coupling. This paper identifies and investigates conical intersections in cyclic tight-binding system-bath Hamiltonians with an odd number of sites and a constant site-to-site coupling. In the absence of bath degrees of freedom, such tight-binding systems with a positive coupling parameter exhibit electronic frustration and a doubly-degenerate ground state. When these systems interact with a harmonic bath, the degeneracy becomes a conical intersection between the adiabatic ground and first excited states. Under weak system-bath coupling, overlapping wavefunctions associated with different sites give rise to distinct pathways with interfering geometric phases, which lead to considerably slower transfer dynamics. The effect is most pronounced in the presence of low-temperature dissipative baths characterized by a continuous spectral density. It is found that the transfer dynamics and equilibration time of a cyclic dissipative three-site system with a positive coupling exceeds that of a similar three-site system with a negative coupling, as well as that of cyclic four-site systems, by an order of magnitude.
Funder
Directorate for Mathematical and Physical Sciences
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献