Abstract
Abstract
In this paper, we revisit large variable asymptotic expansions of tronquée solutions of the Painlevé I equation, obtained via the Riemann–Hilbert approach and the method of steepest descent. The explicit construction of an extra local parametrix around the recessive stationary point of the phase function, in terms of complementary error functions, makes it possible to give detailed information about exponential-type contributions beyond the standard Poincaré expansions for tronquée and tritronquée solutions.
Funder
Isaac Newton Institute for Mathematical Sciences
Agencia Estatal de Investigación
Regional Programme of Research and Technological Innovation
Universidad de Alcalá
Universidad Carlos III de Madrid
EPSRC
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献