Current distribution in magnetically confined 2DEG: semiclassical and quantum mechanical treatment

Author:

Németh Róbert,Kaufmann Zoltán,Cserti JózsefORCID

Abstract

Abstract In the ballistic regime we study both semiclassically and quantum mechanically the electron’s dynamics in two-dimensional electron gas in the presence of an inhomogeneous magnetic field applied perpendicular to the plane. The magnetic field is constant inside four separate circular regions which are located at the four corners of a square of side length larger than the diameter of the circles, while outside the circles the magnetic field is zero. We carry out the stability analysis of the periodic orbits and for given initial conditions numerically calculate the two-dimensional invariant torus embedded in the four-dimensional phase space. Applying the Bohr–Sommerfeld and the Einstein–Brillouin–Keller semiclassical quantization methods we obtain the energy levels for different magnetic field strengths. We also perform exact quantum calculations solving numerically the discretized version of the Schrödinger equation. In our calculations, we consider only those bound states that are localized to the neighborhood of the four magnetic disks. We show that the semiclassical results are in good agreement with those found from our quantum calculations. Moreover, the current distribution and the phase of the different wave functions enable us to deduce the two quantum numbers n 1 and n 2 characterizing the energy levels in the semiclassical methods. Finally, we present two examples in which the quantum state shows a similar structure to the previous states, but these are special in the following sense. One of them is a scar state localized to the neighborhood of the periodic orbit while this orbit is already unstable. In the case of the other state, the current density is circulating in two rings in opposite directions. Thus, it is not consistent with the classical motion in the neighborhood of the periodic orbit.

Funder

Quantum Technology National Excellence Program

NKFIH

National Research, Development and Innovation Office

ELTE Institutional Excellence Program

Hungarian Ministry of Human Capacities, and Innovation Office

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3