Diffusion-mediated surface reactions and stochastic resetting

Author:

Bressloff Paul CORCID

Abstract

Abstract In this paper, we investigate the effects of stochastic resetting on diffusion in R d \ U , where U is a bounded obstacle with a partially absorbing surface U . We begin by considering a Robin boundary condition with a constant reactivity κ 0, and show how previous results are recovered in the limits κ 0 → 0, ∞. We then generalize the Robin boundary condition to a more general probabilistic model of diffusion-mediated surface reactions using an encounter-based approach. The latter considers the joint probability density or generalized propagator P(x, , t|x 0) for the pair (X t , t ) in the case of a perfectly reflecting surface, where X t and t denote the particle position and local time, respectively. The local time determines the amount of time that a Brownian particle spends in a neighborhood of the boundary. The effects of surface reactions are then incorporated via an appropriate stopping condition for the boundary local time. We construct the boundary value problem satisfied by the propagator in the presence of position resetting, and use this to derive implicit equations for the marginal density of particle position and the survival probability. We highlight the fact that these equations are difficult to solve in the case of non-constant reactivities, since resetting is not governed by a renewal process. We then consider a simpler problem in which both the position and local time are reset. In this case, the survival probability with resetting can be expressed in terms of the survival probability without resetting, which considerably simplifies the analysis. We illustrate the theory using the example of a spherically symmetric surface. In particular, we show that the effects of a partially absorbing surface on the mean first passage time (MFPT) for total absorption differs significantly if local time resetting is included. That is, the MFPT for a totally absorbing surface is increased by a multiplicative factor when the local time is reset, whereas the MFPT is increased additively when only particle position is reset.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference36 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3