Wigner function dynamics with boundaries expressed as convolution

Author:

Seidov S SORCID

Abstract

Abstract In the present paper a method of finding the dynamics of the Wigner function of a particle in an infinite quantum well is developed. Starting with the problem of a reflection from an impenetrable wall, the obtained solution is then generalized to the case of a particle confined in an infinite well in arbitrary dimensions. It is known, that boundary value problems in the phase space formulation of the quantum mechanics are surprisingly tricky. The complications arise from nonlocality of the expression involved in calculation of the Wigner function. Several ways of treating such problems were proposed. They are rather complicated and even exotic, involving, for example, corrections to the kinetic energy proportional to the derivatives of the Dirac delta–function. The presented in the manuscript approach is simpler both from analytical point of view and regarding numerical calculation. The solution is brought to a form of convolution of the free particle solution with some function, defined by the shape of the well. This procedure requires calculation of an integral, which can be done by developed analytical and numerical methods.

Funder

Federal academic leadership program ‘‘Priority 2030’’

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference20 articles.

1. On the quantum correction for thermodynamic equilibrium;Wigner;Phys. Rev.,1932

2. Quantenmechanik und gruppentheorie;Weyl;Z. Phys.,1927

3. Quantum mechanics as a statistical theory;Moyal;Math. Proc. Camb. Phil. Soc.,1949

4. Features of moyal trajectories;Dias;J. Math. Phys.,2007

5. Wigner functions, contact interactions and matching;Walton;Ann. Phys., NY,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3