Similarity reductions of peakon equations: integrable cubic equations

Author:

Barnes L E,Hone A N WORCID,Senthilvelan M,Stalin SORCID

Abstract

Abstract We consider the scaling similarity solutions of two integrable cubically nonlinear partial differential equations (PDEs) that admit peaked soliton (peakon) solutions, namely the modified Camassa–Holm (mCH) equation and Novikov’s equation. By making use of suitable reciprocal transformations, which map the mCH equation and Novikov’s equation to a negative mKdV flow and a negative Sawada–Kotera flow, respectively, we show that each of these scaling similarity reductions is related via a hodograph transformation to an equation of Painlevé type: for the mCH equation, its reduction is of second order and second degree, while for Novikov’s equation the reduction is a particular case of Painlevé V. Furthermore, we show that each of these two different Painlevé-type equations is related to the particular cases of Painlevé III that arise from analogous similarity reductions of the Camassa–Holm and the Degasperis–Procesi equation, respectively. For each of the cubically nonlinear PDEs considered, we also give explicit parametric forms of their periodic travelling wave solutions in terms of elliptic functions. We present some parametric plots of the latter, and, by using explicit algebraic solutions of Painlevé III, we do the same for some of the simplest examples of scaling similarity solutions, together with descriptions of their leading order asymptotic behaviour.

Funder

Department of Science & Technology

Engineering & Physical Sciences Research Council, UK

Royal Society

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface to resurgent asymptotics, Painlevé equations and quantum field theory focus issue;Journal of Physics A: Mathematical and Theoretical;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3