Improved and formal proposal for device-independent quantum private query *

Author:

Basak JyotirmoyORCID,Chakraborty Kaushik,Maitra ArpitaORCID,Maitra Subhamoy

Abstract

Abstract In this paper, we present a novel quantum private query (QPQ) scheme that is fully device-independent. As far as we know, this is the first QPQ scheme that uses EPR pairs and offers full device independence. Our approach takes into account the self-testing of shared EPR pairs and the self-testing of projective measurement operators in a mistrustful scenario where neither the client nor the server trusts each other. To achieve full device independence, we also exploit self-testing of a specific class of POVM operators used by the client in our scheme. Additionally, we evaluate the performance of our proposal formally and derive an upper limit of the maximum cheating probabilities (when the protocol does not terminate) for both the dishonest client and the dishonest server.

Publisher

IOP Publishing

Reference36 articles.

1. A proposal for device independent probabilistic quantum oblivious transfer;Basak,2022

2. Private information retrieval;Chor,1995

3. Replication is not needed: single database, computationally-private information retrieval;Kushilevitz,1997

4. Computationally private information retrieval with polylogarithmic communication;Cachin,1999

5. Single-database private information retrieval with constant communication rate;Gentry,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3