Bifurcation analysis of spontaneous flows in active nematic fluids

Author:

Marzorati Arsène,Turzi StefanoORCID

Abstract

AbstractContinuum models of active nematic gels have proved successful to describe a number of biological systems consisting of a population of rodlike motile subunits in a fluid environment. One of the prominent features of active systems is their ability to sustain, above a critical threshold of the active parameter, an autonomous collective motion that results in a spontaneous flow of particles. In this paper we show that in a simple channel geometry, the characteristics of this spontaneous motion are largely independent of the model that is used to describe the dynamics of the active system, but are dictated by material symmetry. The natural symmetry for active nematics in a channel is found to be described by the Klein four-groupK4Z2×Z2. We perform a Lyapunov–Schmidt reduction and an equivariant bifurcation analysis to show that theK4-equivariance of the problem generically results in two pitchfork bifurcations with four solution branches.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3