A field theory approach to the statistical kinematic dynamo

Author:

Holdenried-Chernoff DariaORCID,King David AORCID,Buffett Bruce AORCID

Abstract

Abstract Variations in the geomagnetic field occur on a vast range of time scales, from milliseconds to millions of years. The advent of satellite measurements has allowed for detailed studies of short timescale geomagnetic field behaviour, but understanding its long timescale evolution remains challenging due to the sparsity of the paleomagnetic record. This paper introduces a field theory framework for studying magnetic field generation as a result of stochastic fluid motions. Starting from a stochastic kinematic dynamo model (the Kazantsev kinematic model), we derive statistical properties of the magnetic field that may be compared to observations from the paleomagnetic record. The fluid velocity is taken to be a Kraichnan field with general covariance, which acts as a random forcing obeying Gaussian statistics. Using the Martin-Siggia-Rose-Janssen-de Dominicis formalism, we compute the average magnetic field response function for fluid velocities with short correlation time. From this we obtain an estimate for the turbulent contribution to the magnetic diffusivity, and find that it is consistent with results from mean-field dynamo theory. This framework presents much promise for studying the geomagnetic field in a stochastic context.

Funder

Division of Earth Sciences

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Simons Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3