Criteria for Davies irreducibility of Markovian quantum dynamics

Author:

Zhang YikangORCID,Barthel ThomasORCID

Abstract

Abstract The dynamics of Markovian open quantum systems are described by Lindblad master equations, generating a quantum dynamical semigroup. An important concept for such systems is (Davies) irreducibility, i.e. the question whether there exist non-trivial invariant subspaces. Steady states of irreducible systems are unique and faithful, i.e. they have full rank. In the 1970s, Frigerio showed that a system is irreducible if the Lindblad operators span a self-adjoint set with trivial commutant. We discuss a more general and powerful algebraic criterion, showing that a system is irreducible if and only if the multiplicative algebra generated by the Lindblad operators La and the operator i H + a L a L a , involving the Hamiltonian H, is the entire operator space. Examples for two-level systems, show that a change of Hamiltonian terms as well as the addition or removal of dissipators can render a reducible system irreducible and vice versa. Examples for many-body systems show that a large class of spin chains can be rendered irreducible by dissipators on just one or two sites. Additionally, we discuss the decisive differences between (Davies) reducibility and Evans reducibility for quantum channels and dynamical semigroups which has lead to some confusion in the recent physics literature, especially, in the context of boundary-driven systems. We give a criterion for quantum reducibility in terms of associated classical Markov processes and, lastly, discuss the relation of the main result to the stabilization of pure states and argue that systems with local Lindblad operators cannot stabilize pure Fermi-sea states.

Publisher

IOP Publishing

Reference103 articles.

1. On the generators of quantum dynamical semigroups;Lindblad;Commun. Math. Phys.,1976

2. Completely positive dynamical semigroups of N-level systems;Gorini;J. Math. Phys.,1976

3. Quantum stochastic processes II;Davies;Commun. Math. Phys.,1970

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3