Ultraviolet supercontinuum generation using a differentially-pumped integrated glass chip

Author:

Wanie VincentORCID,Barbato PasqualeORCID,Hahne Josina,Ryabchuk Sergey,Wahid Ammar Bin,Amorim David,Månsson Erik PORCID,Trabattoni AndreaORCID,Osellame Roberto,Martínez Vázquez RebecaORCID,Calegari Francesca

Abstract

Abstract We investigate the generation of ultrabroadband femtosecond ultraviolet (UV) radiation via third-order harmonic generation in highly confined gas media. A dual-stage differential-pumping scheme integrated into a glass microfluidic chip provides an exceptional gas confinement up to several bar and allows the apparatus to be operated under high-vacuum environment. UV pulses are generated both in argon and neon with up to ∼0.8 μJ energy and 0.2% conversion efficiency for spectra that cover the UVB and UVC regions between 200 and 325 nm. Numerical simulations based on the unidirectional pulse propagation equation reveal that ionization plays a critical role for extending the spectral bandwidth of the generated third-harmonic pulse beyond the tripled 800 nm driving laser pulse bandwidth. By delivering UV supercontinua supporting Fourier transform limits below 2 fs, as well as comparable pulse energies with respect to capillary-based techniques that typically provide high spectral tunability but produce narrower bandwidths, our compact device makes a step forward towards the production and application of sub-fs UV pulses for the investigation of electron dynamics in neutral molecules.

Funder

European Union’s Horizon 2020 Research and Innovation Program

Cluster of Excellence 'CUI: Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft

Helmoltz-Lund International Graduate School

ERC-2014-StG STARLIGHT

Partnership for Innovation, Education and Research

Deutsche Forschungsgemeinschaft-SFB-925

Helmholtz Young Investigator Group

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3