NIR-to-NIR and NIR-to-Vis up-conversion of SrF2:Ho3+ nanoparticles under 1156 nm excitation

Author:

Ryszczyńska SylwiaORCID,Grzyb TomaszORCID

Abstract

Abstract Recently, the up-converting (UC) materials, containing lanthanide ions (Ln3+)have attracted considerable attention because of the multitude of their potential applications. The most frequently investigated are UC systems based on the absorption of near-infrared (NIR) radiation by Yb3+ ions at around 975–980 nm and emission of co-dopants, usually Ho3+, Er3+ or Tm3+ ions. UC can be observed also upon excitation with irradiation with a wavelength different than around 980 nm. The most often studied systems capable of UC without the use of Yb3+ ion are those based on the properties of Er3+ ions, which show luminescence resulting from the excitation at 808 or 1532 nm. However, also other Ln3+ ions are worth attention. Herein, we focus on the investigation of the UC phenomenon in the materials doped with Ho3+ ions, which reveal unique optical properties upon the NIR irradiation. The SrF2 NPs doped with Ho3+ ions in concentrations from 4.9% to 22.5%, were synthesized by using the hydrothermal method. The structural and optical characteristics of the obtained SrF2:Ho3+ NPs are presented. The prepared samples had crystalline structure, were built of NPs of round shapes and their sizes ranged from 16.4 to 82.3 nm. The NPs formed stable colloids in water. Under 1156 nm excitation, SrF2:Ho3+ NPs showed intense UC emission, wherein the brightest luminescence was recorded for the SrF2:10.0%Ho3+ compound. The analysis of the measured lifetime profiles and dependencies of the integral luminescence intensities on the laser energy allowed proposing the mechanism, responsible for the observed UC emission. It is worth mentioning that the described SrF2:Ho3+ samples are one of the first materials for which the UC luminescence induced by 1156 nm excitation was obtained.

Funder

Narodowe Centrum Nauki

European Social Fund

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3