The phasor FLIM method reveals a link between a change in energy metabolism and mHtt protein spread in healthy Mammalian cells when co-cultured with Huntington diseased cells

Author:

Sameni Sara,Zhang Run,Digman Michelle AORCID

Abstract

Abstract Huntington Disease (HD) is a late-onset autosomal neurodegenerative disease characterized by the aggregations of mutant Huntingtin proteins (mHTT). A glutamine stretch (PolyQ) at the N-terminal of the Huntingtin protein is generated by the abnormal expansion of CAG trinucleotide repeats in exon 1 of the HTT gene. While the resulting polyQ aggregates are the predominate feature of HD, the intercellular spread of the expanded protein and the effect upon this transfer inside healthy cells have not yet fully understood. Here, we have employed the phasor Fluorescence Lifetime Imaging Microscopy (FLIM) method to measure NADH fluorescence lifetime change after the internalization of the PolyQ protein. Based on our analysis, we have found a significant decrease in the fraction of bound NADH in both cytoplasmic and nucleus regions when cells are co-cultured or when healthy cells uptake the supernatant containing polyQ proteins and aggregates. Overall, our FLIM study combined with confocal fluorescence imaging visualizes the absorption of the mutant Htt protein aggregates which results in a distinct NADH fluorescence lifetime between control cells and acceptor cells. These studies show, for the first time, the influence of how neighboring cells expressing the expanded Htt protein can regulate energy metabolism in healthy cells.

Funder

NSF BEST (Biophotonics Across Energy, Space and Time) IGERT (Integrative Graduate Education and Research Traineeship) grant

National Institute of General Medical Sciences

NIH

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding the partner: FRET and beyond;Experimental Cell Research;2024-08

2. Phasor-based multi-harmonic unmixing for in-vivo hyperspectral imaging;Methods and Applications in Fluorescence;2022-11-09

3. Phasor-Based Multi-Harmonic Unmixing for In-Vivo Hyperspectral Imaging;2022-04-01

4. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington’s Disease;International Journal of Molecular Sciences;2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3