Super Hamiltonian in superspace for incommensurate superlattices and quasicrystals

Author:

Valiente MORCID,Duncan C W,Zinner N T

Abstract

Abstract Infinite quasiperiodic arrangements in space, such as quasicrystals, are typically described as projections of higher-dimensional periodic lattices onto the physical dimension. The concept of a reference higher-dimensional space, called a superspace, has proved useful in relation to quasiperiodic systems. Although some quantum-mechanical systems in quasiperiodic media have been shown to admit quasiperiodic states, any sort of general Hamiltonian formalism in superspace is lacking to this date. Here, we show how to extend generic quantum-mechanical Hamiltonians to higher dimensions in such a way that eigenstates of the original Hamiltonian are obtained as projections of the Hamiltonian in superspace, which we call the super Hamiltonian. We apply the super Hamiltonian formalism to a simple, yet realistic one-dimensional quantum particle in a quasiperiodic potential without the tight-binding approximation, and obtain continuously labelled eigenstates of the system corresponding to a continuous spectrum. All states corresponding to the continuum are quasiperiodic. We also obtain the Green’s functions for continuum states in closed form and, from them, the density of states and local density of states, and scattering states off defects and impurities. The closed form of this one-dimensional Green’s function is equally valid for any continuum state in any one-dimensional single-particle quantum system admitting continuous spectrum. With the basis set we use, which is periodic in superspace, and therefore quasiperiodic in physical space, we find that Anderson-localised states are also quasiperiodic if distributional solutions are admitted, but circumvent this difficulty by generalising the superspace method to open boundary conditions. We also obtain an accurate estimate of the critical point where the ground state of the system changes from delocalised to Anderson localised, and of the critical exponent for the effective mass. Finally, we calculate, within the superspace formalism, topological edge states for the semi-infinite system, and observe that these exist, in the delocalised phase, within all spectral gaps we have been able to resolve. Our formalism opens up a plethora of possibilities for studying the physics of electrons, atoms or light in quasicrystalline and other aperiodic media.

Funder

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Aarhus Universities Forskningsfond

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3