Abstract
Abstract
A general formulation is employed to study and quantitatively ascertain the effect of plasma broadening of intrinsic autoionizing (AI) resonances in photoionization cross sections. In particular, R-matrix data for iron ions described in the previous paper in the RMOP series (RMOP-II, hereafter RMOP2) are used to demonstrate underlying physical mechanisms due to electron collisions, ion microfields (Stark), thermal Doppler effects, core excitations, and free–free transitions. Breit–Pauli R-matrix cross sections for a large number of bound levels of Fe ions are considered, 454 levels of Fe XVII, 1184 levels of Fe XVIII and 508 levels of Fe XIX. Following a description of theoretical and computational methods, a sample of results is presented to show significant broadening and shifting of AI resonances due to extrinsic plasma broadening as a function of temperature and density. The redistribution of AI resonance strengths broadly preserves their integrated strengths as well as the naturally intrinsic asymmetric shapes of resonance complexes which are broadened, smeared and flattened, eventually dissolving into the bound-free continua.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献