Effects of single-photon double photoionization and direct double Auger decay on K-shell ionization kinetics of Ar atoms interacting with XFEL pulses

Author:

Li YongjunORCID,Gao Cheng,Zeng Jiaolong,Yuan JianminORCID

Abstract

Abstract In studies investigating the interaction of matter with ultraintense, ultrashort x-ray free electron laser (XFEL) pulses, the evolution kinetics are generally described by directly solving a time-dependent rate equation that considers single-photon and single-electron processes. In the present study, we show the effects of single-photon double photoionization and direct double Auger decay in the K-shell ionization kinetics of XFELs interaction with argon atoms. Because a huge number of coupled transition channels are present in the K-shell ionization, we develop a Monte Carlo method to simulate the complex ionization kinetic processes and give the level population evolution of ions and charge state distribution (CSD). The K-shell-dominated ionization dynamics of Ar irradiated by XFEL pulses with photon energies of 5000, 5500 and 6500 eV are investigated and compared with available experimental observations of the CSD. The results show that the population fractions of Ar5+, Ar6+ and Ar9+ are increased by 78%, 152% and 144%, respectively, by these higher-order processes at a photon energy of 5000 eV. Including the direct double-electron processes, the predicted CSDs are in better agreement with the experiments carried out at the photon energies of 5000, 5500 and 6500 eV. It is expected that the developed theoretical formalism can be used to more accurately calibrate the beam profile and intensity of XFELs.

Funder

Key R&D Program of China

National Natural Science Foundation of China

Science Challenge Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3