Electronic, vibrational and optical properties of two-electron atoms and ions trapped in small fullerene-like cages

Author:

Santos Leandro CORCID,Pereira J Claudio C,Martins M Graças R,Vianna J David M

Abstract

Abstract The problem of atoms and molecules caged inside fullerenes has attracted renewed interests since a new endohedral species has been experimentally realized (Bloodworth et al 2019 Angew. Chem., Int. Ed. 58 5038). In this sense, detailed theoretical studies on the spectroscopic properties of atoms and ions spatially confined in fullerene-like structures are convenient. Here we perform density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the electronic, vibrational and optical properties of two-electron atomic systems, X, caged in C20 and C20H20 endohedral complexes; i.e. X@C20 and X@C20H20 (X = He, Li+, and Be++). Among these endohedral complexes, only the encapsulated Be++ ion gives rise to strongly bound complexes, whereas the encapsulated Li+ ion depends on the confining environment, and the encapsulated He atom seems to be highly repulsive in both types of cages. Our calculated excitation energies indicate that the lowest-lying singlet states strongly depend on both the nature of the endohedral atom/ion and the type of the carbon cage. Although He@C20H20 and He@C20 are obtained as repulsive complexes, they produce a small effect in the absorption spectra of the complexes. However, the presence of Li+ or Be++ in the endohedral complexes dramatically changes the electronic absorption profile of these cages. Overall, this study shows that the confinement of a Be++ ion in a very restricted space is energetically favorable, being its quantum states controllable by the confining environment.

Funder

Fundação de Amparo à Pesquisa do Estado da Bahia

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3