Localized electrodeposition micro additive manufacturing of pure copper microstructures

Author:

Ren Wanfei,Xu JinkaiORCID,Lian Zhongxu,Sun Xiaoqing,Xu Zhenming,Yu Huadong

Abstract

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications, such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, manufacturing pure copper microstructures remain challenging. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM). This method combines localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can effectively print helical springs and hollow tubes. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and closed-loop control of an atomic force servo. The printing state of the micro-helical springs can be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm s−1, which can be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (∼44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineate a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.

Funder

National Natural Science Foundation of China

he Fund for Jilin Province Scientific and Technological Development Program

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3