Recent advances in nature inspired triboelectric nanogenerators for self-powered systems

Author:

Zhang BaosenORCID,Jiang Yunchong,Ren Tianci,Chen Baojin,Zhang Renyun,Mao YanchaoORCID

Abstract

Abstract Triboelectric nanogenerators (TENGs) stand at the forefront of energy harvesting innovation, transforming mechanical energy into electrical power through triboelectrification and electrostatic induction. This groundbreaking technology addresses the urgent need for sustainable and renewable energy solutions, opening new avenues for self-powered systems. Despite their potential, TENGs face challenges such as material optimization for enhanced triboelectric effects, scalability, and improving conversion efficiency under varied conditions. Durability and environmental stability also pose significant hurdles, necessitating further research towards more resilient systems. Nature inspired TENG designs offer promising solutions by emulating biological processes and structures, such as the energy mechanisms of plants and the textured surfaces of animal skins. This biomimetic approach has led to notable improvements in material properties, structural designs, and overall TENG performance, including enhanced energy conversion efficiency and environmental robustness. The exploration into bio-inspired TENGs has unlocked new possibilities in energy harvesting, self-powered sensing, and wearable electronics, emphasizing reduced energy consumption and increased efficiency through innovative design. This review encapsulates the challenges and advancements in nature inspired TENGs, highlighting the integration of biomimetic principles to overcome current limitations. By focusing on augmented electrical properties, biodegradability, and self-healing capabilities, nature inspired TENGs pave the way for more sustainable and versatile energy solutions.

Funder

the Programs for Tackling Key Problems in Science and Technology of Henan Province

Henan Province Science and Technology Research and Development Program Joint Fund Advantageous Discipline Cultivation Project

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3