Selective liquid directional steering enabled by dual-scale reentrant ratchets

Author:

Sun JingORCID,Qin Xuezhi,Song Yuxin,Xu Zhenyu,Zhang Chao,Wang Wei,Wang Zhaokun,Wang Bin,Wang ZuankaiORCID

Abstract

Abstract Achieving well-controlled directional steering of liquids is of great significance for both fundamental study and practical applications, such as microfluidics, biomedicine, and heat management. Recent advances allow liquids with different surface tensions to select their spreading directions on a same surface composed of macro ratchets with dual reentrant curvatures. Nevertheless, such intriguing directional steering function relies on 3D printed sophisticated structures and additional polishing process to eliminate the inevitable microgrooves-like surface deficiency generated from printing process, which increases the manufacturing complexity and severally hinders practical applications. Herein, we developed a simplified dual-scale structure that enables directional liquid steering via a straightforward 3D printing process without the need of any physical and chemical post-treatment. The dual-scale structure consists of macroscale tilt ratchet equipped with a reentrant tip and microscale grooves that decorated on the whole surface along a specific orientation. Distinct from conventional design requiring the elimination of microgrooves-like surface deficiency, we demonstrated that the microgrooves of dual-scale structure play a key role in delaying or promoting the local flow of liquids, tuning of which could even enable liquids select different spreading pathways. This study provides a new insight for developing surfaces with tunable multi-scale structures, and also advances our fundamental understanding of the interaction between liquid spreading dynamics and surface topography.

Funder

Innovation and Technology Commission

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Shenzhen-Hong Kong Joint Innovation Project

Science and Technology Planning Project of Guangdong Province

Shenzhen Science and Technology Innovation Council

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3