Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications

Author:

Zhang Yiyuan,Jiao Yunlong,Li Chuanzong,Chen Chao,Li Jiawen,Hu Yanlei,Wu Dong,Chu Jiaru

Abstract

Abstract Femtosecond laser direct writing (FLDW) has been widely employed in controllable manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision, simplicity, and compatibility for diverse materials in comparison with other methods (e.g. ion etching, sol-gel process, chemical vapor deposition, template method, and self-assembly). These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications, including self-cleaning surfaces, oil-water separation, and fog collection. This review presents the inherent relationship between natural organisms, fabrication methods, micro/nanostructures and their potential applications. Thereafter, we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces. Subsequently, we summarize a variety of typical bioinspired designs (e.g. lotus leaf, pitcher plant, rice leaf, butterfly wings, etc) for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology. Based on the principle of interfacial chemistry and geometrical optics, we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW. This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Key Project of Equipment Pre-Research Field Fund of China

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3