Tensile strength prediction of steel sheets: an insight into data-driven models, dimensionality reduction, and feature importance

Author:

Millner GerfriedORCID,Mücke ManfredORCID,Romaner Lorenz,Scheiber DanielORCID

Abstract

Abstract In this work we apply data-driven models for predicting tensile strength of steel coils from chemical composition and process parameters. The data originates from steel production and includes a full chemical analysis, as well as many process parameters and the resulting strength properties from tensile tests. We establish a data pre-processing pipeline, where we apply data cleaning and feature engineering to create a machine-readable dataset suitable for various modeling tasks. We compare prediction quality, complexity and interpretability of pure machine learning (ML) models, either with the full feature set or a reduced one. Dimensionality reduction methods are used to reduce the number of features and therefore reduce complexity, either with a smart selection method or feature encoding, where features are combined and the included information is preserved. In order to determine key features of our models, we are investigating feature importance ratings, which can be used as a feature selection criteria. Furthermore, we are highlighting methods to explain predictions and determine the impact of every feature in every observation applicable for any ML model.

Publisher

IOP Publishing

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3