Abstract
Abstract
We calculate the thermal conductance of a structured silicon nanocrystal with a hole of different sizes. The numerical study is based on non-equilibrium molecular dynamics simulations using two potential models for the interatomic interactions: (i) an empirical Tersoff–Brenner (Tersoff) potential; (ii) a semi-empirical tight binding (TB) potential. TB potential model predicts a similar thermal conductance for the nanocrystal with no hole and with a small size hole, which contrasts with the monotonic decrease predicted by Tersoff potential model. In addition, thermal conductance decreasing is higher for TB potential model when the surface-to-volume ratio increases. This points out that to study thermal properties of nanostructures with high surface-to-volume ratio is mandatory the use of potential models with high transferability to take adequately into account the relevant quantum physical effects due to boundaries and surfaces.
Subject
Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献