Experimental investigation on mechanical and wear properties of GNP/Carbon fiber/epoxy hybrid composites

Author:

Namdev AnuragORCID,Telang Amit,Purohit Rajesh

Abstract

Abstract In this research, carbon fiber and Graphene nanoplatelets (GNP) of different weight percentages of GNP (0, 0.1,0.3, and 0.5 wt%) reinforced hybrid composites were fabricated via hand layup technique followed by compression molding. For wear analysis to understand the correlation between control parameters (wt% of filler, normal load, velocity, and sliding distance) and response measurements (weight loss), the design of experiments and analysis of variance (ANOVA) is used. The control variables such as normal loads (5, 10, 15, and 20 N), velocity (1, 2, 3 and 4 m s−1), and sliding distance (200, 300, 400, and 500 m) are selected for the research. It was observed that 0.5 wt% GNP-filled carbon fiber/epoxy composite shows higher tensile and flexural strength than another composite. It has been discovered that adding GNP reduces the wear in terms of weight loss. Scanning electron microscopy (SEM) was used to examine composites’ worn surfaces. The analysis concluded that experimental results are closer to optimum results.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3