Abstract
Abstract
To address the problem of rusting of reinforcing bars that occurs in industry, the aim is to control the denseness of the iron oxide skin by changing the controlled cooling process without increasing the production cost, thereby improving the corrosion resistance of the bars. In this paper, the effect of different cooling control processes on the industrial atmospheric corrosion behaviour of HRB400E hot-rolled rebar was investigated using alternating wet and dry corrosion tests. The morphology and structure of iron oxide on the surface and cross-section of the rebar were observed using scanning electron microscopy (SEM) and field emission electron probe microanalysis (EPMA); the corrosion products and electrochemical behaviour of the specimens after alternating wet and dry tests were compared using x-ray diffraction analysis (XRD) and electrochemical methods. The results showed that the hot-rolled rebar without controlled cooling had a dense surface, a thicker iron oxide skin and a tighter bond between the iron oxide skin and the substrate; the corrosion rate of the hot-rolled rebar without controlled cooling was less than that of the rebar with controlled cooling in the alternating wet and dry corrosion tests; the corrosion products mainly consisted of α-FeOOH, γ-FeOOH and Fe3O4; the self-corrosion potential and rust layer resistance of the hot rolled rebar without controlled cooling after rolling are higher than those of the controlled cooling bars, showing good corrosion resistance.
Funder
CITIC CBMM Niobium Steel Research and Development Grant
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献