Hybrid bio-based composites from blends of epoxy and soybean oil resins reinforced with jute woven fabrics

Author:

Ozkur Semih,Sezgin Hande,Akay Erdem,Yalcin-Enis IpekORCID

Abstract

Abstract In our world, where environmental factors are taken into consideration more and more, the interest in biomaterials leaves its place to the need and this leads the researchers to search for new materials. The aim of this study is to produce an environmentally friendly, sustainable material with the use of a plant oil-based bio-resin (acrylated epoxidized soybean oil). In this context, bio-composites containing different proportions (from 0 to 100 wt%, in 10% increments) of acrylated epoxidized soybean oil (AESO) and epoxy resin are reinforced with four-ply jute woven fabric and produced by the vacuum infusion method. The bio-composites produced within the scope of the study analyzed physically (fiber weight ratio), mechanically (tensile strength, flexural strength, drop-weight impact resistance, and Charpy impact strength), instrumentally (differential scanning calorimetry and Fourier-transform infrared spectroscopy) and morphologically (scanning electron microscopy). According to the results, the tensile and flexural strength values of the composites containing more than 30 wt% AESO resin decrease due to the ductility of the structure; subsequently, composites with AESO content above 50 wt% are found to exhibit superior impact resistance. Composites with pure AESO resin absorb 7 J energy which is almost 3 times higher than pure epoxy composites. The maximum tensile strength (63 MPa) of composites are achieved for 30 wt% AESO content indicating the newly formed hydrogen bonding leading to enhanced fiber-matrix interface. The bio-composites designed and produced in the project have been a promising alternative for various end-use areas, from construction elements to the automotive sector and sports equipment, where human health and environmental elements are considered.

Funder

Istanbul Teknik Üniversitesi

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference56 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3